Elucidating the process of activation of methyl-coenzyme M reductase.
نویسندگان
چکیده
Methyl-coenzyme M reductase (MCR) catalyzes the reversible reduction of methyl-coenzyme M (CH3-S-CoM) and coenzyme B (HS-CoB) to methane and heterodisulfide CoM-S-S-CoB (HDS). MCR contains the hydroporphinoid nickel complex coenzyme F430 in its active site, and the Ni center has to be in its Ni(I) valence state for the enzyme to be active. Until now, no in vitro method that fully converted the inactive MCRsilent-Ni(II) form to the active MCRred1-Ni(I) form has been described. With the potential use of recombinant MCR in the production of biofuels and the need to better understand this enzyme and its activation process, we studied its activation under nonturnover conditions and achieved full MCR activation in the presence of dithiothreitol and protein components A2, an ATP carrier, and A3a. It was found that the presence of HDS promotes the inactivation of MCRred1, which makes it essential that the activation process is isolated from the methane formation assay, which tends to result in minimal activation rates. Component A3a is a multienzyme complex that includes the mcrC gene product, an Fe-protein homolog, an iron-sulfur flavoprotein, and protein components involved in electron bifurcation. A hypothetical model for the cellular activation process of MCR is presented.
منابع مشابه
In vivo activation of methyl-coenzyme M reductase by carbon monoxide
Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the rate-limiting and final step in methane biosynthesis. Using coenzyme B as the two-electron donor, MCR reduces methyl-coenzyme M (CH3-SCoM) to methane and the mixed disulfide, CoBS-SCoM. MCR contains an essential redox-active nickel tetrahydrocorphinoid cofactor, Coenzyme F430, at its active site. The active form of the en...
متن کاملThe biosynthesis of methylated amino acids in the active site region of methyl-coenzyme M reductase.
The global production of the greenhouse gas methane by methanogenic archaea reaches 1 billion tons per annum. The final reaction releasing methane is catalyzed by the enzyme methyl-coenzyme M reductase. The crystal structure of methyl-coenzyme M reductase from Methanobacterium thermoautotrophicum revealed the presence of five modified amino acids within the alpha-subunit and near the active sit...
متن کاملThe magnetic properties of the nickel cofactor F430 in the enzyme methyl-coenzyme M reductase of Methanobacterium thermoautotrophicum.
Cofactor 430 of methyl-coenzyme M reductase from Methanobacterium thermoautotrophicum was studied in both the extracted form in aqueous solution and protein-bound by using low-temperature magnetic-circular-dichroism spectroscopy. In both forms the nickel was present as high-spin paramagnetic nickel(II), spin S = 1, subject to almost equal zero-field splitting (cofactor F430, D = +9.0 cm-1, E/D ...
متن کاملInhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity and of Ras farnesylation mediate antitumor effects of anandamide in human breast cancer cells.
The endocannabinoid system regulates cell proliferation in human breast cancer cells. Recently, we described that a metabolically stable anandamide analog, 2-methyl-2'-F-anandamide, by activation of CB1 receptors significantly inhibited cell proliferation of human breast cancer cell lines. In this study, we observed that the activation of the CB1 receptor, in two human mammary carcinoma cell li...
متن کاملGeometric and Electronic Structures of the Ni(I) and Methyl-Ni(III) Intermediates of Methyl-Coenzyme M Reductase
Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the terminal step in biological methane synthesis. Using coenzyme B (CoBSH) as the two-electron donor, MCR reduces methyl-coenzyme M (methyl-SCoM) to form methane and the heterodisulfide product, CoBS-SCoM. MCR contains an essential redox active nickel tetrapyrrolic cofactor called coenzyme F430 at its active site, which is a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 196 13 شماره
صفحات -
تاریخ انتشار 2014